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Abstract
We propose a novel, variational inversion methodology for the electrical
impedance tomography (EIT) problem, where we seek electrical conductivityσ
inside a bounded, simply connected domain �, given simultaneous
measurements of electric currents I and corresponding potentials V at the
boundary. Explicitly, we make use of natural, variational constraints on the
space of admissible functions σ , to obtain efficient reconstruction methods
which make best use of the data. We give a detailed analysis of the variational
constraints; we propose a variety of reconstruction algorithms for the static
problem in a simple continuum model. We discuss their advantages and
disadvantages and we assess the performance of our algorithms through
numerical simulations and comparisons with other, well established, numerical
reconstruction methods.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrical properties such as the electrical conductivity σ and the electric permittivity ε
determine the behaviour of materials under the influence of external electric fields [63]. Let
us consider a bounded, simply connected set� ⊂ R

d , for d � 2, and, at frequencyω, let γ be
the complex admittivity function

γ (x, ω) = σ(x) + iωε(x), where i = √−1. (1.1)

The electrical impedance is the reciprocal of γ and it measures the ratio between the electric
field and the electric current at location x ∈ �. Electrical impedance tomography (EIT)
is the inverse problem of determining the impedance in the interior of �, given simultaneous
measurements of direct or alternating electric currents and voltages at the boundary ∂� (i.e. the
Neumann-to-Dirichlet (NtD) or Dirichlet-to-Neumann (DtN) map).
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Different materials display different electrical properties (see for example [11, 69, 92]),
so a map of σ(x) and ε(x), for x ∈ �, can be used to infer the internal structure in �. Due
to this fact, EIT is an imaging tool with important applications in fields such as medicine,
geophysics, environmental sciences and nondestructive testing of materials. Examples of
medical applications of EIT are the detection of pulmonary emboli [26, 52, 54], monitoring
of apnoea [3], monitoring of heart function and blood flow [44, 60] and breast cancer
detection [26]. In geophysics and environmental sciences, EIT can be useful for locating
underground mineral deposits [85], detection of leaks in underground storage tanks [87]
and monitoring flows of injected fluids into the earth, for the purpose of oil extraction or
environmental cleaning [88]. Finally, in nondestructive testing, EIT can be used for the
detection of corrosion [89] and of small defects, such as cracks or voids, in metals [4, 5,
24, 37, 45, 91].

EIT has been studied extensively in the last two decades and substantial progress has
been made in the theoretical [1, 6, 12, 17, 19, 23, 35, 42, 62, 72, 73, 76, 79, 81, 82, 84, 97,
102], numerical [18, 19, 21, 22, 26, 31, 33, 39, 49, 56–59, 66, 68, 70, 90, 95, 99, 106] and
experimental [10, 26, 54, 75, 87, 96] aspects of the problem. Nevertheless, EIT remains an area
of active research which continues to pose a variety of challenging questions to theoreticians,
numerical analysts and experimentalists alike [19, 26, 54, 102].

In this paper, we begin by considering direct electric current excitations (i.e., ω = 0),
and we seek to image the electrical conductivity function σ(x) inside �. We propose a new
reconstruction methodology for EIT, based on two, dual to each other, variational principles for
the NtD and DtN maps, respectively. A variational, ‘equation-error’ inversion method, based
on the algorithm of Wexler et al [105], has already been analysed by Kohn and Vogelius [73]
and implemented by Kohn and McKenney [70], where the electric current, the potential and
the conductivity inside � are sought as minimizers of a functional which ensures that, at the
‘solution’, Ohm’s law is satisfied, at least for noiseless data. We consider here a different
formulation which uses the variational principles as constraints on the set of admissible
conductivity functions σ . Variational constraints have been proposed by Berryman and Kohn
in [13] (see also [15, 16]). However, they have only been partially analysed and their role
in inversion has not been entirely understood3. We give a detailed analysis of the variational
constraints and we show how they can be used effectively in the numerical solution of the
EIT problem. We propose a variety of reconstruction algorithms and we discuss some of their
advantages and disadvantages. All these algorithms guarantee that, at least in the noiseless
case, Ohm’s law is satisfied inside � and, consequently, the measured boundary potential V
is fitted in the natural, H

1
2 (∂�) norm. In theory, our numerical algorithms achieve the same

objective as the variational method considered in [70, 73]. However, due to the ill-posedness
of the EIT problem, we note that, for noisy data, their numerical performance can be different.
We point out the potential benefits of variationally constrained reconstructions over widely
used imaging methods such as output least squares [19, 26, 106], where data are fitted in the
weaker, L2(∂�) norm, at the expense of loss in resolution of the images of σ . Finally, we note
that use of variational constraints is not limited to the static case and can be extended to the
complex EIT problem.

This paper is organized as follows: in sections 2.1 and 2.2, we define the forward and
inverse problem and we state the variational principles for the NtD and DtN maps. The
variational constraints on σ , as defined originally by Berryman and Kohn [13], are given in
section 2.3. In section 3, we motivate the use of variational constraints in the reconstruction

3 There exists a variationally constrained numerical algorithm for the travel time tomography problem, due to
Berryman [14]. However, this problem is considerably different from EIT, especially because Fermat’s principle
is not a minimum variational principle and, as such, it does not have a dual.
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algorithms. A detailed analysis of the variational constraints is given in section 4. Based
on this analysis, we propose a variety of reconstruction algorithms, in section 5.1. After
a brief discussion of these algorithms, we concentrate on the constrained least squares
formulation, which is implemented as discussed in 5.2. Some representative numerical results
and comparisons with traditional least squares and the variational algorithm in [70, 73] are
given in section 6. Finally, in section 7, we give a summary of the paper and conclusions.

2. The mathematical model

2.1. The forward model

We assume throughout the paper that the medium is isotropic. The electric potential φ(x) is
defined in terms of the electric field E(x) as

E(x) = −∇φ(x) (2.1)

and the current density j(x) satisfies Ohm’s law

j(x) = −σ(x)∇φ(x), (2.2)

where σ(x) is a scalar valued, bounded, and strictly positive measurable function in �̄, the
closure of the domain. When there are no sources of current inside �, j satisfies

∇ · [σ(x)∇φ(x)] = 0 in �, (2.3)

which we take with either Dirichlet boundary conditions

φ(x) = V (x), for x ∈ ∂�, (2.4)

or Neumann boundary conditions

σ(x)∇φ(x) · n(x) ≡ σ(x)
∂φ(x)
∂n

= I (x) at ∂�, such that
∫
∂�

I (x) ds(x) = 0, (2.5)

where n(x) is the outer normal at x ∈ ∂�. It is well known that Dirichlet boundary value
problem (2.3), (2.4), for arbitrary V ∈ H

1
2 (∂�), has a unique solution φ(x) ∈ H 1(�), at least

in the weak sense [43]. Neumann boundary value problem (2.3), (2.5), for I ∈ H − 1
2 (∂�), has

a unique solution φ(x) ∈ H 1(�), up to an additive constant [43], which we fix by choosing
the ground as ∫

∂�

φ(x) ds(x) =
∫
∂�

V (x) ds(x) = 0. (2.6)

The electric current density satisfies equations

∇ ×
[

1

σ(x)
j(x)

]
= 0 and ∇ · j(x) = 0 in �,

−j(x) · n(x) = I (x), for x ∈ ∂�, such that
∫
∂�

I (x) ds(x) = 0,
(2.7)

which, by (2.2), are equivalent to (2.3), (2.5). In particular, we have that (2.7) has a unique
solution j(x), with bounded norm in L2(�), which is related to potential φ(x) ∈ H 1(�), a
solution of (2.3), (2.5), by Ohm’s law (2.2).

Boundary value problems (2.3), (2.4); (2.3), (2.5) or, equivalently, (2.7), for a known
function σ(x) in� and its corresponding data I (x) or V (x), given for all x ∈ ∂�, are referred
to as forward mathematical models for EIT.
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2.2. The inverse problem

In EIT, the conductivity functionσ(x) is unknown and it is to be determined from simultaneous
measurements of boundary voltages V (x) and corresponding current densities I (x). In this
section, we define the DtN and NtD maps which relate V (x) to I (x). These maps depend
nonlinearly on the unknownσ(x) and they are the data in inversion. We review some properties
of these maps and we formulate the inverse problem.

The DtN map �σ : H
1
2 (∂�) → H − 1

2 (∂�) is defined as

�σV (x) = σ(x)
∂φ(x)
∂n

for x ∈ ∂�, (2.8)

where V (x) is arbitrary in H
1
2 (∂�) and φ(x) solves forward problem (2.3), (2.4). This map

is self-adjoint and positive semidefinite with null space N {�σ } = {V (x) = constant} (see
for example [19, 26, 98] and references therein). Moreover, it has the Dirichlet variational
formulation [28]

〈V ,�σV 〉 = min
u|∂�=V

∫
�

σ(x)|∇u(x)|2 dx, for arbitrary V (x) ∈ H
1
2 (∂�), (2.9)

where 〈·, ·〉 denotes the L2(∂�) inner product

〈 f, g〉 =
∫
∂�

f (x)g(x) ds(x).

The mathematical formulation of EIT, as first posed by Calderón [23], is ‘find a bounded,
strictly positive conductivity function σ(x), given the DtN map �σ ’. That this problem can
be solved uniquely for a large class of functions σ is established in [35, 36, 71, 79, 97].

The generalized inverse of �σ , the NtD map (�σ )
−1 : J → H

1
2 (∂�), is defined on the

restricted space of currents

J =
{

I (x) ∈ H − 1
2 (∂�) such that

∫
∂�

I (x) ds(x) = 0

}
(2.10)

and, for any I (x) ∈ J , (�σ )
−1 I (x) = φ(x) at ∂�, where φ(x) is the solution of Neumann

boundary value problem (2.3), (2.5), (2.6). The NtD map (�σ )
−1 is self-adjoint and positive

definite [19, 26, 98], with Thomson variational formulation

〈I, (�σ )
−1 I 〉 = min

∇·j=0
−j·n|∂�=I

∫
�

1

σ(x)
|j(x)|2 dx, for arbitrary I (x) ∈ J (2.11)

(see for example [28]). Then, (�σ )
−1 is the generalized inverse of �σ , as can be seen from

duality relations [17, 19, 38]

〈V ,�σV 〉 = sup
I∈J

{2〈I, V 〉 − 〈I, (�σ )
−1 I 〉}, for any V (x) ∈ H

1
2 (∂�), (2.12)

〈I, (�σ )
−1 I 〉 = sup

V ∈H
1
2 (∂�)

{2〈I, V 〉 − 〈V ,�σV 〉}, for any I (x) ∈ J . (2.13)

In practice, we do not have full knowledge of maps (�σ )
−1 or �σ . Instead, we have a

set of N experiments, where we define an excitation pattern Ie(x) ∈ J and we measure the
resulting voltage Ve(xp), at discrete locations xp ∈ ∂� of the electrodes, along the boundary.
Thus, the more realistic definition of EIT is ‘find σ from partial and usually noisy knowledge
of the NtD map’. A significant difficulty of the EIT problem is its severe ill-posedness which
causes small perturbations of the boundary data to be exponentially amplified in the image
of σ inside � [1, 6, 7, 19, 32, 34, 61, 76, 93, 99]. Consequently, all reconstruction methods
must be stabilized by some regularization approach, which ensures convergence by restricting
σ to a compact subset of L∞(�) (see for example [25, 39, 40, 51, 78, 100] or the statistical,
Bayesian approaches in [66, 67, 83, 94, 103, 104]).
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2.3. Variational feasibility constraints

Variational constraints on the conductivity function σ have been introduced by Berryman and
Kohn [13], as follows:

Definition 1. We say that function σ is Dirichlet feasible for boundary voltage Ve ∈ H
1
2 (∂�),

if

〈Ve,�σVe〉 = min
u|∂�=Ve

∫
�

σ(x)|∇u(x)|2 dx � 〈Ve,�σ	Ve〉, (2.14)

where σ	 is the true conductivity and 〈Ve,�σ	Ve〉 = ∫
∂�

Ve Ie ds(x) = Pe is the measured
power dissipated into heat. Moreover, we say that σ is Dirichlet feasible, if (2.14) holds for
all Ve ∈ H

1
2 (∂�), e = 1, . . . , N.

The rationale behind this definition is given by variational principle (2.9), as follows: take
any φ ∈ H 1(�), such that φ|∂� = Ve, and obtain by (2.9)

〈Ve,�σ	Ve〉 �
∫
�

σ	(x)|∇φ(x)|2 dx. (2.15)

Now, let φ = φe, the solution of Dirichlet problem (2.3), (2.4) for conductivity σ , and suppose
that σ does not satisfy (2.14). Then,

〈Ve,�σ	Ve〉 > 〈Ve,�σVe〉 = min
u|∂�=Ve

∫
�

σ(x)|∇u(x)|2 dx =
∫
�

σ(x)|∇φe(x)|2 dx

and σ is deemed infeasible.
Similar to definition 1, we define the Thomson feasibility constraints as follows.

Definition 2. A function σ is Thomson feasible for boundary electric current Ie ∈ J , if

〈Ie, (�σ )
−1 Ie〉 = min

∇·j=0
−j·n|∂�=Ie

∫
�

σ−1(x)|j(x)|2 dx � 〈Ie, (�σ	)
−1 Ie〉, (2.16)

where 〈Ie, (�σ	)
−1 Ie〉 = ∫

∂�
Ve Ie ds(x) = Pe, the measured power dissipated into heat.

Moreover, σ is Thomson feasible, if (2.16) holds for all Ie ∈ J , e = 1, . . . , N.

Finally, we say that σ is feasible if it is both Dirichlet and Thomson feasible.

3. Motivation for the variational formulation

Let us define the set of admissible conductivity functions

S = {σ(x) ∈ L∞(�̄), σ (x) � m} (3.1)

where m is some positive constant. Suppose that σ	 ∈ S is the conductivity function to
be imaged, such that, for a prescribed excitation current I ∈ J , the boundary voltage is
V = (�σ	)

−1 I . Ideally, we would like to image the conductivity by minimizing the operator
norm

min
σ∈S ‖(�σ )

−1 − (�σ	)
−1‖

H − 1
2 (∂�),H

1
2 (∂�)

, (3.2)

but, since only limited data are available, we can consider at best

min
σ∈S

N∑
e=1

‖[(�σ )
−1 − (�σ	)

−1]Ie‖2

H
1
2 (∂�)

, for Ie ∈ J , 1 � e � N, (3.3)
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for some positive integer N . Then, one could attempt to solve nonlinear problem (3.3) with an
iterative optimization algorithm, such as Newton’s method [30]. However, due to the high cost
of computing fractional order Sobolev space norms and the possible lack of differentiability of
the functional in (3.3) [27,32, 33], no practical reconstruction algorithm uses formulation (3.3).
Instead, one uses output least squares methods,

min
σ∈S

N∑
e=1

‖[(�σ )
−1 − (�σ	)

−1]Ie‖2
L2(∂�)

, (3.4)

where the objective function is an approximation of the Hilbert Schmidt norm of (�σ )
−1 −

(�σ	)
−1 over L2(∂�) [32] (the currents Ie are scaled to unit norm). Obviously,

formulation (3.4) can give at most a lower bound on (3.3) and,although numerically convenient,
it could decrease the resolution of the image [27].

We propose to use the variational constraints, defined in definitions 1 and 2, to achieve the
minimization (3.3) in a computationally efficient manner. A possible approach is suggested
by the following lemma.

Lemma 1. Let I and V be generic boundary data for imaging σ	 and let {σk(x)}k�1 be a
sequence of functions in S such that

lim
k→∞〈I, (�σk )

−1 I 〉 = P and lim
k→∞〈V ,�σk V 〉 = P, (3.5)

where P = 〈I, V 〉. Then,

lim
k→∞

‖(�σk )
−1 I − V ‖

H
1
2 (∂�)

= 0. (3.6)

Proof. Let us denote by φk the potential which solves forward problem (2.3), (2.4), for
conductivity σk and Dirichlet data V . Also, let jk be the electric current density which solves
problem (2.7) for conductivity σk and Neumann data I . Equivalently, we have jk = −σk∇ψk ,
where ψk solves Neumann boundary value problem (2.3), (2.5), (2.6). Then, integration by
parts and assumption (3.5) give

〈I, (�σk )
−1 I 〉 + 〈V ,�σk V 〉 − 2P =

∫
�

σk(x)|∇φk(x)− ∇ψk(x)|2 dx → 0, as k → ∞.

(3.7)

Moreover, by the coercivity of bilinear form a(u, w) = ∫
�
σk∇u · ∇w dx, for u, w ∈ H 1(�)

satisfying
∫
∂�

u ds = ∫
∂�
w ds = 0 [43], limk→∞ ‖φk − ψk‖H 1(�) = 0 and, by the trace

theorem [43], limk→∞ ‖V − (�σk )
−1 I‖

H
1
2 (∂�)

= 0. �

Thus, we achieve the minimization (3.3), by seeking an inversion methodology which
generates sequences {σk}k�1 of functions in S which satisfy the feasibility constraints of
definitions 1 and 2 as equalities (or near equalities in the noisy case) in the limit k → ∞.
Such inversion methods are described in section 5.1 and they are based on the analysis of
the variational constraints, which we give in section 4. Note in particular that jk and φk are
related by Ohm’s law inside � (except possibly for subsets of measure zero), since, by (3.7),
‖σk∇φk + jk‖L2(�) → 0, as k → ∞.

4. Analysis of variational constraints

4.1. Theory

As motivated by section 3, we wish to obtain, in a computationally efficient manner, a sequence
{σk(x)}k�1 of conductivity functions satisfying (3.5). We begin by taking a closer look at output
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Dirichlet feasible
Thompson infeasible

Dirichlet infeasible
Thompson feasible

feasible

feasible

2σ

σ1

Figure 1. Take a planar section through the space of conductivity functions, whereσ is parametrized
in terms of two values σ1 and σ2. The Thomson infeasibility region is contained in the Dirichlet
feasible region, as stated by lemma 2.

least squares methods, which generate sequences {σ̃k(x)}k�1 of conductivities such that

lim
k→∞

‖(�σ̃k )
−1 I − V ‖L2(∂�) = 0. (4.1)

Since

〈I, (�σ̃k )
−1 I 〉 − P =

∫
∂�

I [(�σ̃k )
−1 I − V ] ds,

output least squares can give convergence of the Thomson constraint,

lim
k→∞

〈I, (�σ̃k )
−1 I 〉 = P,

provided that the excitation current I is taken in L2(∂�). Now, for the Dirichlet constraint,
we have

〈V ,�σ̃k V 〉 − P = 〈V ,�σ̃k V 〉 −
∫
∂�

V (x)I (x) ds(x)

= 〈V ,�σ̃k V 〉 −
∫
∂�

φ̃k(x)σ̃k(x)
∂ψ̃k

∂n
(x) ds(x)

= 〈V ,�σ̃k V 〉 −
∫
�

∇ · [σ̃k(x)φ̃k(x)∇ψ̃k(x)] dx

= 〈V ,�σ̃k V 〉 −
∫
�

∇ · [σ̃k(x)ψ̃k(x)∇φ̃k(x)] dx

=
∫
∂�

[V (x)− (�σ̃k )
−1 I ]�σ̃k V (x) ds(x),

where φ̃k and ψ̃k are the Dirichlet and Neumann potentials solving problems (2.3), (2.4)
and (2.3), (2.5), respectively, for conductivity σ̃k and data V and I . However, since
�σ̃k V ∈ H − 1

2 (∂�), convergence of the Dirichlet constraint does not follow from (4.1).
To develop algorithms which give (3.5), we examine the relationship between the

two feasibility constraints. We begin by showing that, given data I and V , which are
in σ -correspondence, the Thomson infeasible set is included in the Dirichlet feasible set
(see figure 1). Then, we could achieve convergence (3.5) of both constraints, to P , by
confining all iterates σk to the Dirichlet infeasible region and by letting the Thomson constraint



1166 L Borcea et al

converge to P . The latter can be achieved, for example, with output least squares, provided
that we take I sufficiently smooth (in L2(∂�)) (see sections 3 and 5.1).

Lemma 2. Let σ ∈ S be a conductivity function satisfying 〈I, (�σ )
−1 I 〉 � P, for some I ∈ J

and P = 〈I, V 〉. Then, 〈V ,�σV 〉 � P.

Proof. The proof follows from duality relation (2.12). We have

〈V ,�σV 〉 � 2〈I, V 〉 − 〈I, (�σ )
−1 I 〉 � 2〈I, V 〉 − P = P.

Similarly, we obtain from duality relation (2.13) that the Dirichlet infeasible set inS is included
in the Thomson feasible set, for data I and V . �

Lemma 3. Let σ ∈ S be a conductivity function satisfying 〈V ,�σV 〉 � P, for some
V ∈ H

1
2 (∂�) and P = 〈I, V 〉. Then, 〈I, (�σ )

−1 I 〉 � P.

Note that, in general, given just one set of data I and its σ -corresponding voltage V , the
interiors of the Dirichlet and Thomson feasible sets are not disjoint. To guarantee that the two
sets intersect just at the boundary, we need all measurements, as stated below.

Lemma 4. Let D and T be the interiors of the Dirichlet and Thomson feasibility sets,
respectively,

D = {σ ∈ S such that 〈V ,�σV 〉 > 〈V ,�σ	V 〉, for all V ∈ H − 1
2 (∂�)}, (4.2)

T = {σ ∈ S such that 〈I, (�σ )
−1 I 〉 > 〈I, (�σ	)

−1 I 〉, for all I ∈ J }. (4.3)

Then, D ∩ T = ∅.

Proof. Suppose that σ ∈ T , such that

2〈I, V 〉 − 〈I, (�σ )
−1 I 〉 < 2〈I, V 〉 − 〈I, (�σ	 )

−1 I 〉,
for all I ∈ J and arbitrary V ∈ H − 1

2 (∂�). Taking the sup over I and using duality
relation (2.12), we have

〈V ,�σV 〉 = sup
I∈J

{2〈I, V 〉 − 〈I, (�σ )
−1 I 〉} � sup

I∈J
{2〈I, V 〉 − 〈I, (�σ	 )

−1 I 〉} = 〈V ,�σ	V 〉

and so σ /∈ D. In fact, if all measurements are available, by the uniqueness of solution of the
inverse problem4, the intersection of the feasibility sets consists of a single point σ	, the true
solution. �

When using a reconstruction algorithm which confines all iterates σk inside (or outside) a
feasibility set, one needs, for example, to find an appropriate initial guess. This can be easily
done due to the monotonicity results.

Lemma 5. Let σ , σ̃ be two functions in S and suppose that σ(x) � σ̃ (x), for all x in �, with
the possible exception of subsets of measure zero. Then,

〈V ,�σV 〉 � 〈V ,�σ̃V 〉 and 〈I, (�σ )
−1 I 〉 � 〈I, (�σ̃ )

−1 I 〉,
for any V ∈ H

1
2 (∂�) and I ∈ J .

4 Uniqueness has been proven for a large class of conductivities in [20, 35, 36, 71, 79, 84, 97]. All these results
require some smoothness assumptions on σ but the result may hold for the entire set S .



Variationally constrained numerical solution of EIT 1167

Proof. The proof is given by Berryman in [16]. We repeat it here, for completeness. From
variational principle (2.9), we have

〈V ,�σV 〉 = min
u|∂�=V

∫
�

σ(x)|∇u(x)|2 dx �
∫
�

σ(x)|∇φ̃(x)|2 dx �
∫
�

σ̃ (x)|∇φ̃(x)|2 dx

= min
u|∂�=V

∫
�

σ̃ (x)|∇u(x)|2 dx = 〈V ,�σ̃V 〉.
Similarly, from (2.11), we have

〈I, (�σ̃ )
−1 I 〉 = min

∇·i=0
i·n|∂�=I

∫
�

1

σ̃ (x)
|i(x)|2 dx

=
∫
�

1

σ̃ (x)
|j̃(x)|2 dx �

∫
�

1

σ̃ (x)
|j(x)|2 dx �

∫
�

1

σ(x)
|j(x)|2 dx

= min
∇·i=0−i·n|∂�=I

∫
�

1

σ(x)
|i(x)|2 dx = 〈I, (�σ )

−1 I 〉.

�

We end this section with the well known convexity result (see for example [16, 64]).

Lemma 6. Let σ, σ̃ be two functions belonging to the Dirichlet feasible set for data I and V .
Then, the linear combination λσ + (1 − λ)σ̃ , for 0 � λ � 1, is Dirichlet feasible, as well.

Note however that the set of Thomson feasible conductivities is not convex.

4.2. Examples

We give a few examples of the feasibility regions analysed in section 4.1, for a two-dimensional
conductivity σ(x, y) in a unit square�. We take σ = 1 everywhere in the domain, except for
two rectangular inclusions, where σ equals σ1 or σ2. By varying σ1 and σ2, we obtain, similar
to figure 1, a planar section through the space of conductivity functions. We calculate the
Dirichlet and Thomson feasibility regions, for various data pairs (I, V ) and different locations
of the inhomogeneities inside �.

Let us inject unit current near the lower left corner of� and take it out near its upper right
corner. For such a fixed I , we study the effect of the location of the inclusions on the feasibility
regions. In figure 2, we have two inclusions, of conductivity σ1 = 2 and σ2 = 0.5, near the
centre of the domain. We show in the right-hand picture the feasibility region (the intersection
of the Dirichlet and Thomson feasibility regions), for data I and corresponding data V . Note
that the feasibility region collapses to a long arc in the part of the plane displayed in the figure.
Any pair (σ1, σ2) along this arc gives an almost perfect fit of the data, and so the conductivity
distribution in figure 2 cannot be determined by just this experiment I , V . However, as shown
in figure 3, inclusions which are close to the boundary are easily distinguished, because the
boundaries of the Dirichlet and Thomson feasibility regions intersect at one point, the exact
conductivity.

Next, we fix the conductivity distribution to that shown in figure 4, where we have two
inclusions of conductivity σ1 = 2 and σ2 = 0.5 in a background of unit conductivity, and we
study the effect of the excitation current on the feasibility set. In the middle picture of figure 4
we take the optimal current which best distinguishes the inclusions in � [27, 61], whereas in
the right-hand picture of figure 4 we inject and take out unit current near the upper left and
lower right corners of �, respectively. As seen from figure 4, the latter is a bad excitation,
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Figure 2. On the left, we plot σ as a function of x and y. On the right, we show in yellow the
feasibility region in the plane parametrized by σ1 and σ2. The conductivity distribution on the left
is not easily distinguishable by the experiment with data (I, V ), because the boundaries of the two
feasibility regions intersect along a long arc in the plane.
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Figure 3. The conductivity distribution on the left is easily distinguishable by the experiment I, V ,
because the boundaries of the two feasibility regions intersect just at one point, where the true
solution lies.
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Figure 4. The conductivity distribution in the left-hand picture can be easily distinguished with the
optimal current excitation, but it cannot be distinguished by a bad example of a current excitation.
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which cannot distinguish the conductivity, since the feasibility region collapses to a long arc
over a large region in the plane (σ1, σ2).

Clearly, for more general conductivity distributions, it is typically not possible to find σ
with just one experiment, and so more data are needed and one should look at the intersection of
the feasibility regions for all available current excitations. This could be useful, in particular,
in special cases where the conductivity is known a priori to be piecewise constant over M
given subdomains (i.e. σ is parametrized in terms of σ1, σ2, . . . , σM )Note 5, because we could
use the feasibility constraints to determine the error in the recovered σ j , for j = 1, . . . ,M .

5. Variationally constrained reconstruction algorithms

In this section, we introduce several variational algorithmic approaches for the numerical
solution of the EIT problem. Then, we describe in detail our implementation of two variational
algorithms and the unconstrained output least squares algorithm.

5.1. Several algorithmic approaches

We assume that N experiments have been conducted with boundary excitation currents Ie ∈ J ,
that the corresponding voltages Ve at ∂� have been measured6 and that the power dissipated
into heat, Pe = ∫

∂�
IeVe ds, has been estimated, for e = 1, 2, . . . , N .

5.1.1. Constrained least squares approach. As is shown in section 3, in the output least
squares formulation, for Ie ∈ J

⋂
L2(∂�), the convergence of objective function (3.4) to

zero implies the convergence of the Thomson constraint, to Pe, but not necessarily that of the
Dirichlet constraint. However, in light of the results in section 4.1, we can achieve the desired
convergence (3.5) of both Dirichlet and Thomson constraints on σ , by the constrained least
squares approach:

min
σ∈S

N∑
e=1

‖(�σ )
−1 Ie − Ve‖2

L2(∂�)
s.t. 〈Ve,�σVe〉 � Pe, e = 1, . . . , N, (5.1)

where Ie ∈ J
⋂

L2(∂�) and Ve = (�σ	)
−1 Ie ∈ H

1
2 (∂�). By requiring σ to be in the

Dirichlet infeasibility region, we ensure that, at the minimizer, both Dirichlet and Thomson
constraints are satisfied as equalities (or near equalities in the presence of noise). Equivalently,
a minimizer of (5.1) lies at the intersection between the Dirichlet and Thomson feasibility
boundaries. Furthermore, by minimizing over the set S defined in (3.1), we require that σ be
strictly positive.

5.1.2. Equation error approach. If follows from the proof of lemma 1 that

〈Ve,�σVe〉 + 〈Ie, (�σ )
−1 Ie〉 − 2Pe =

∫
�

σ(x)|∇[ψe(x)− φe(x)]|2 dx � 0, (5.2)

where φe is the solution of Dirichlet problem (2.3) and (2.4), with data Ve = (�σ	)
−1 Ie ∈

H
1
2 (∂�), andψe is the solution of Neumann problem (2.3) and (2.5), with data Ie ∈ J . Then,

5 Such problems may arise in medical imaging, where the borders of the subdomains of constant conductivity could
be determined from CAT scans [65].
6 Note that, in all our reconstructions, Ie and Ve are given at discrete locations along ∂�. Hence, for the numerical
solution of the forward problems and for the calculation of Pe, we use these discrete data points and construct a
quadrature to evaluate the pertinent integrals.
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a global minimizer of

min
σ∈S

N∑
e=1

(〈Ve,�σVe〉 + 〈Ie, (�σ )
−1 Ie〉 − 2Pe) (5.3)

is a solution of the EIT problem, at which Ohm’s law je = −σ∇ψe = −σ∇φe is satisfied (in
the L2(�) sense), at least for noiseless data. In this formulation, we again require that σ be
strictly positive by minimizing over the set S. We note that this approach is equivalent to that
of [70, 73, 105] and, as such, we refer to it as the equation-error variational formulation.

5.1.3. Other approaches. Since the Dirichlet infeasibility region for data pair (I, V ) is
a subset of the Thomson feasibility region for the same data pair (see section 4.1), the
minimization of Thomson functional 〈Ie, (�σ )

−1 Ie〉 − Pe � 0, over Dirichlet infeasible σ ,
ensures the desired convergence (3.5). Explicitly, we take

min
σ∈S

N∑
e=1

(〈Ie, (�σ )
−1 Ie〉 − Pe) s.t. 〈Ve,�σVe〉 � Pe, e = 1, . . . , N, (5.4)

for Ie ∈ J and Ve = (�σ	)
−1 Ie ∈ H

1
2 (∂�). Similarly, we can have a ‘dual’ formulation,

where we constrain σ to the Thomson infeasibility region and we minimize the Dirichlet
functional 〈Ve,�σVe〉 − Pe � 0:

min
σ∈S

N∑
e=1

(〈Ve,�σVe〉 − Pe) s.t. 〈Ie, (�σ )
−1 Ie〉 � Pe, e = 1, . . . , N. (5.5)

In addition, there exist other possibilities. For example, one may directly seek to find
a conductivity in the intersection of the Thomson and Dirichlet feasibility boundaries by
minimizing the distance between the two infeasibility regions:

min
σD,σT

‖σD − σT‖2
L2(�)

s.t. 〈Ve,�σD Ve〉 � Pe, 〈Ie, (�σT )
−1 Ie〉 � Pe, e = 1, . . . , N.

(5.6)

Here, σD is in the Dirichlet infeasibility region and σT in the Thompson infeasibility region.
The reconstruction can then be given by the pointwise average of σD and σT.

Although the formulations based on variational constraints are ‘equivalent’ in a
mathematical sense (i.e. they perform essentially the same data fit), their practical performance
may differ from case to case. Our numerical experiments suggest that approaches (5.1), (5.4)
and (5.5) perform similarly in the tested cases, and that they are the most consistent ones of
all the formulations that we have considered. The equation-error approach (5.3) performs
equally well for noiseless data but it can behave differently for noisy measurements. Finally,
approach (5.6) is the least successful one. Our preliminary studies suggest that the objective
function in (5.6) has many local minima and, as such, the iterative optimization process
stagnates after just a few steps, for most initial guesses. Due to this behaviour, we have
not been able to obtain reasonable reconstructions with formulation (5.6), at least for realistic
initial starting values of σ .

5.2. Implementation

We now describe our implementation of three formulations: (1) the constrained least squares
approach, (2) the equation-error approach and (3) the unconstrained output least squares
approach. We choose the constrained least squares approach to represent the newly proposed
variationally constrained formulations, and we compare it with the other two approaches.
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5.2.1. The optimization method. In an attempt to achieve better scaling,we have implemented
normalized versions of the three formulations: namely, the normalized constrained least
squares formulation,

min
σ∈S

N∑
e=1

‖(�σ )
−1 Ie − Ve‖2

L2(∂�)

‖Ve‖2
L2(∂�)

s.t. 〈Ve,�σVe〉 � Pe, e = 1, . . . , N, (5.7)

the normalized equation-error formulation,

min
σ∈S

N∑
e=1

〈Ve,�σVe〉 + 〈Ie, (�σ )
−1 Ie〉 − 2Pe

2Pe
, (5.8)

and the normalized unconstrained output least squares formulation,

min
σ∈S

N∑
e=1

‖(�σ )
−1 Ie − Ve‖2

L2(∂�)

‖Ve‖2
L2(∂�)

. (5.9)

Furthermore, in each of the above formulations, by minimizing over the set of all σ ∈ S,
we are requiring σ to be strictly positive. This condition could be enforced by explicitly
adding the constraint σ � m, where m is some small positive constant, to each formulation.
However, we implemented (5.8) and (5.9) without this constraint because no iterate σ was
ever produced in our experiments that was not strictly positive. Moreover, we did not add this
additional constraint to our implementation of formulation (5.7) since we found that, for our
experiments, it was always the case that σ > 0 whenever a feasible initial guess was used.

To solve the optimization problems (5.7)–(5.9), we use routines from OPT++, a library
of nonlinear optimization algorithms written in C++ [55]. Since the goal of our numerical
study is to validate the variational formulations, we employ existing software to demonstrate
that implementing the constrained least squares formulation is both reasonable and practical.
Using existing software also eliminates any biases that may occur in customized optimization
routines and allows us to make fair comparisons of the methods.

Solving an optimization problem with OPT++ requires the user to select an optimization
method and to set several algorithm inherent parameters. For formulation (5.7),we opted to use
the nonlinear interior point solver NIPS, the only method available in OPT++ that is capable of
handling nonlinear constraints. To solve the unconstrained formulations (5.8) and (5.9), both
NIPS7 and the OPT++ quasi-Newton methods are appropriate choices. We tested both methods
but saw no significant difference in the reconstructions obtained. Thus, for consistency of the
comparisons, all the results we present here were obtained using NIPS.

To measure the progress of its optimization algorithm,OPT++ uses a merit function. Merit
functions are particularly useful when solving constrained nonlinear optimization problems
such as (5.7) because they strike a balance between reducing the objective function and
satisfying the constraints. OPT++ offers the user three options for the merit function: the
VanShannon, the ArgaezTapia, and the norm of the KKT conditions (NormFmu) [55]. We
tested all three available choices and found NormFmu to be the most useful for our problems.
Note that, for formulations (5.8) and (5.9), NormFmu corresponds to the norm of the gradient
of the function, not to the function itself, which is often the choice for a merit function for
an unconstrained problem. Because nonlinear optimization has been studied extensively, we
refer the reader to the literature for further details on merit functions (see for example chapter
15 in [80] and references therein).

Finally, all the optimization algorithms in OPT++ require the user to define some stopping
criteria. Using numerical experiments, we chose the maximum number of iterations to be 100,

7 For unconstrained problems, NIPS corresponds to the BFGS method (see for example chapter 8 of [80] and
references therein).
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Figure 5. The four conductivity models used in the numerical study.

and the maximum number of function evaluations to be 1000. We also required the algorithm
to stop whenever the norm of the gradient of the merit function became smaller than 10−8.
In OPT++, this stopping criterion is called the function tolerance and it is set as an input
parameter. To prevent bias in our comparisons, we used the same stopping tolerances for all
three algorithms.

5.2.2. Discretization and calculation of derivatives. In our implementation, we only consider
the two-dimensional problem with the domain � being the unit square. This simple model
allows a straightforward implementation and manageable computational times, while being
adequate for the purpose of evaluating the strength and weakness of different formulations. For
convenience, we assume that the conductivity is known at the boundary of the domain. In all
simulations included in this paper, we discretize the conductivity in terms of its nodal values,
as a piecewise linear function, on a 16 × 16 uniform mesh of �. Note that because of the
ill-posedness of the inverse problem, discretizing σ on a finer grid would not be advantageous.
On the boundary, σ is set to be the constant unity (1.0) at each of the 64 boundary nodes. The
unknowns are the values of the conductivity at each of the 225 interior nodes.

We use the first N optimal current excitation vectors as described in [26, 46, 61]. These N
currents are the eigenvectors corresponding to the N largest in magnitude eigenvalues of the
real symmetric matrix given by the difference between the discrete NtD maps for true σ and
for σ 0 = 1. The procedure for determining these eigenvectors and for selecting N is discussed
in detail in appendix C of [48]. In our experiments, we set N = 15, 18, 19 and 23 for test
conductivity models 1–4, respectively, illustrated in figure 5.
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For each experiment, we solve the Dirichlet and Neumann problems for the current
conductivity, at any iterate σ , on a 32 × 32 uniform triangularization of the domain � using
the piecewise linear, finite elements method. The reason for using a finer mesh for the forward
problems than for the inverse problem is that the extra accuracy in solving the forward problems
is expected to lead to more accurate functional and gradient values, hence hopefully enhancing
the quality and robustness of the inversion. Since our goal in this numerical study is merely to
demonstrate the merit of the variational formulations, we only note that the forward problem
can be easily solved on a finer grid but opt to use a 32 × 32 discretization of �.

The quadrature rules for the approximation of the constraints are defined such that the
important identity (5.2) is preserved as much as possible in the discrete setting. Let us denote
by Ḡ = G ∪ ∂G the grid for the numerical solution of the forward problems, where G is the
set of interior grid points and ∂G is the set of boundary points. The Neumann potential ψ is
given by

ψ(x) =
∑
j∈Ḡ

ψ j b j(x), (5.10)

where b j(x) are the usual piecewise linear basis functions for the uniform triangulation on Ḡ
and ψ j are the unknown values of ψ at the grid points j ∈ Ḡ, calculated such that∫
�

σ(x)∇v(x) · ∇ψ(x) dx =
∫
∂�

I (x)v(x) ds(x), for all piecewise linear functions v(x).

(5.11)

Then, by setting v(x) = ψ(x) in (5.11), we obtain for the Thomson constraint

〈I, (�σ )
−1 I 〉 ≈

∑
j∈∂G

ψ j

∫
∂�

I (x)b j (x) ds(x) =
∫
�

σ(x)|∇ψ(x)|2 dx. (5.12)

The Dirichlet potential φ is given by

φ(x) =
∑
j∈∂G

Vj b j(x) +
∑
j∈G

φ j b j(x), (5.13)

where Vj is the given voltage at j ∈ ∂G and where φ j , for j ∈ G, are calculated such that∫
�

σ(x)∇v(x) · ∇φ(x) dx = 0, for all piecewise linear functions v(x)vanishing at ∂G.

(5.14)

Taking v(x) = φ(x) in (5.11), we have

P = 〈I, V 〉 ≈
∑
j∈∂G

Vj

∫
∂�

I (x)b j (x) ds(x) =
∫
�

σ(x)∇ψ(x) · ∇φ(x) dx. (5.15)

Finally, from (5.14), taking v(x) = φ(x)− ∑
j∈∂G Vj b j(x), we have

〈V ,�σV 〉 ≈
∑
j∈∂G

Vj

∫
�

σ(x)∇b j(x) · ∇φ(x) dx =
∫
�

σ(x)|∇φ(x)|2 dx, (5.16)

where the integration on the left-hand side is limited to the triangles with at least one node in
∂G.

We note that formulations and (5.7), (5.8) require the solutions of both Dirichlet and
Neumann problems, while in the unconstrained output least squares (5.9) formulation, only
the Neumann problem needs to be solved. Nevertheless, the stiffness matrices AD and AN that
one inverts in the numerical solution of Dirichlet and Neumann problems (5.14) and (5.11),
respectively, are closely related to each other. In fact, AD is a subblock of AN and this
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can be used toward reducing the computational cost8. Therefore, although the constrained
least squares formulation is computationally more expensive to solve than its unconstrained
counterpart, it is still affordable. In section 6, we will give some preliminary results that show
that this extra computation is also worthwhile because it yields better quality results.

An important computational task in our implementation is the evaluation of the first
derivatives of the objective functionals. An efficient computation of the derivatives is given
by the adjoint method (see for example [33]). Straightforward calculations [48] give that the
first derivative of 〈V ,�σV 〉, with respect to σ , is given, pointwise for x ∈ �, by

(D〈V ,�σ V 〉)(x) = |∇φ(x)|2 (5.17)

and it is thus based solely on the previously computed approximation of φ, the solution of the
Dirichlet problem for conductivity σ . The derivative of 〈I, (�σ )

−1 I 〉, with respect to σ , is
given, pointwise for x ∈ �, by [48]

(D〈I, (�σ )
−1 I 〉)(x) = −|∇ψ(x)|2, (5.18)

whereψ is the Neumann potential. Finally, the derivative of the output least squares functional
is

(D‖(�σ )
−1 I − V ‖2

L2(∂�)
)(x) = −2∇ψ(x) · ∇τ (x), (5.19)

where τ is the (piecewise linear) adjoint potential satisfying∫
�

σ(x)∇v(x) · ∇τ (x) dx =
∫
∂�

[(�σ )
−1 I (x)− V (x)]v(x) ds(x)

for all piecewise linear functions v(x). The calculation of τ andψ require the inversion of the
same stiffness matrix AN, so (5.19) is calculated with little extra computation.

The function, constraint and derivative calculations for all three algorithms were
implemented as Fortran 90 subroutines. We use the software package SuperLU [8, 29] to
efficiently solve the sparse linear systems resulting from the finite-element discretization.
These subroutines are accessed by the OPT++ optimization routines via customized
wrappers [55].

6. Numerical results

In this section, we present numerical results and we compare the performance of the three
implemented algorithms (see section 5.2). We reiterate that the objective of our numerical
comparison is to evaluate the reconstruction quality of these algorithms. Therefore, we will
not include CPU in the presented results. Although our current implementations are adequately
efficient for all three algorithms, there certainly exists ample room for further improvements.
Moreover, the question of which optimization methods are most effective for the approaches
we have presented remains a topic for further study. However, we will make reference to the
‘wall clock time’ (i.e. the elapsed time between when the process starts to run and when it is
finished) as reported by OPT++. These times will show that although the variational methods
are more expensive, they are still affordable. Note that all the numerical tests were run on an
Alpha Ev6 Linux machine based on Redhat Linux 6.2, using a stock 2.2.18 Linux kernel.

To make a fair comparison, we use the same simulated data for all three methods, and we
start each algorithm from the same initial guess, conductivity σ 0 ≡ 1 at all nodes. However,
for the constrained least squares formulation, such an initial guess may not be feasible with
respect to the constraints 〈Ve,�σVe〉 � Pe for e = 1, 2, . . . , N . In this case, invoking the

8 For example, one can use a block factorization approach where, once AD has been factorized, AN can be factorized
at a small extra cost (see [47], for example).
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monotonicity of the Dirichlet constraint (lemma 5), we decrease the value of σ 0 at all the
interior nodes of � until the constraints are strictly satisfied.

We test the three algorithms on four different conductivity models as illustrated in figure 5.
All four models have a background conductivity equal to unity. The first model contains a
single inclusion with conductivity value equal to 2; the second contains two inclusions with
conductivity values equal to 2 and 1/2, respectively; the third contains two inclusions, both
with conductivity values equal to 2; and the fourth model contains three separate inclusions,
two with conductivity values equal to 2 and one with a conductivity value equal to 1/2.

6.1. Regularization

The variational constraints restrict the space of admissible conductivity functions and, as
such, they may introduce some natural regularization to the problem. However, the ill-
posedness is not eliminated by the variational constraints, as one can see easily from well
known counter examples (see for example [6]). Initial testing of our algorithms showed
that further regularization is needed for better performance9. We thus take a Tikhonov type
regularization [101], where we add to each objective function the regularization term

α‖∇σ‖2
L2(�)

, (6.1)

for a small, positive parameter α. This ensures that σ − σ 0 ∈ H 1
0 (�), where σ 0 is the initial

guess. Then, by the compact embedding H 1
0 (�) ⊂⊂ L2(�) [2], we have that any sequence

of iterates {σ k} contains at least a subsequence {σ kl } which converges strongly in L2(�), to
σα , a minimizer of the regularized objective function.

Clearly, there are many other possible regularization methods (see for example [9, 39, 41,
50, 51, 74, 77, 101] and the references therein). However, our investigation focuses on the
performance of the variational formulations, rather than on the choice of regularization. Thus,
we take a convenient regularization method, which is inexpensive and easy to implement.

The parameter α is chosen with the Morozov discrepancy principle [39, 77, 86],
implemented numerically via the practical procedure suggested in [9]. We begin with a
relatively large value for α and, as the algorithm progresses, we gradually decrease α until the
value of the objective function is less than some specified tolerance ε. In our implementation,
we chose to reduce α by one order of magnitude whenever the regularization term dominated
the objective function. In the case of noiseless data, the tolerance ε reflects numerical error.
When noise is present, the tolerance is chosen so as to avoid fitting the noise in the data.
For both the output least squares and constrained least squares methods, the inequality to be
satisfied is

N∑
e=1

‖(�σ )
−1 Ie − Ve‖2

L2(∂�)

‖Ve‖2
L2(∂�)

� ε. (6.2)

Since the stopping criterion is the same for these two methods, we choose the same
regularization parameter for both methods. For the equation-error method, α is reduced until

N∑
e=1

(〈Ve,�σVe〉 + 〈Ie, (�σ )
−1 Ie〉 − 2Pe)

2Pe
� ε. (6.3)

9 For example, if we examine the objective function near the computed solution, we observe the following
manifestation of the ill-posedness of the EIT problem: without additional regularization, the objective function
appears to be very flat so that two conductivity distributions may attain approximately the same objective function
value, but differ significantly from one another. The addition of a regularization term makes the function appear more
‘curved’ and it thus reduces the severity of ill-conditioning.
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Figure 6. Reconstructions of test conductivity 1. Noise level: 1%. (a) Output least squares;
(b) equation error; (c) constrained least squares.

Because the equation-error method has a very different objective functional, its regularization
parameter α may differ from that of the output least squares and constrained least squares
methods. For the purposes of our comparison study, we compute the ε in (6.3) by calculating
the left-hand side of (6.3) with noisy data for a known conductivity. Although this way of
choosing the tolerance works only in simulation studies, we use it to ensure that we do our best
to choose the parameter ε for the equation-error method, in order to have a fair comparison.
Note that, for all three methods, the values of ε were incorporated into OPT++ using the
‘function tolerance’ parameter which is one of the input parameters.

6.2. Noisy data

In practice, EIT data are contaminated with noise. Hence we test the three algorithms using
noisy data at a 1% noise level and a 3% noise level. Past studies have considered data with
noise levels as high as 20% (see for example [53, 106]). However, most algorithms tend to
perform very poorly with such inaccurate data. Furthermore, with today’s technology, it is
expected that the noise level in EIT data be small10.

We add uniformly distributed, multiplicative random noise to each of the vectors of
boundary potentials, Ve, for e = 1, . . . , N . Thus, for each experiment e, the voltage data
are now

Ve(i) = Ve(i) +
ξ

100
ϕi |Ve(i)| (6.4)

where Ve(i) is the i th component of vector Ve, corresponding to the i th boundary point, ξ
is the strength of the noise, and ϕi is a random number from a uniform distribution in [0,1]
generated by the function RANDOM NUMBER intrinsic to Fortran 90.

6.2.1. Numerical results with 1% noise. Figure 6 shows the reconstructions of test
conductivity 1 obtained with data at a 1% noise level. All three methods produce a smooth
image without spurious artifacts. However, the magnitude of the inclusion obtained by the
constrained least squares is significantly higher than that of the other two methods. For this
test, the wall clock time of the output least squares method was 56 s while the wall clock

10 A discussion of measurement accuracy in real data gathering experiments can be found, for example, in [87].
Given the present modern equipment, the noise level expected is around 1%. Nevertheless, the number 1% is not
always accurate and it may be site and application dependent. In particular, measurements for medical imaging
applications [54] are usually more accurate than those in geophysics.
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Figure 7. Reconstructions of test conductivity 2. Noise level: 1%. (a) Output least squares;
(b) equation error; (c) constrained least squares.
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Figure 8. Reconstructions of test conductivity 3. Noise level: 1%. (a) Output least squares;
(b) equation error; (c) constrained least squares.

time of the constrained least squares method was 142 s. Although it took the constrained least
squares algorithm more than twice as long to find a solution, it should be noted that it found a
better solution in a reasonable amount of time.

The recovered images of test conductivity 2 are displayed in figure 7. The magnitudes
obtained by the variational methods are better than those of the output least squares algorithm.
The equation-error method shows a few spurious artifacts while both least squares methods
are quite smooth. Note that both least squares methods begin with the same regularization
parameter, α = 10−4. This is subsequently reduced to α = 10−7.

The reconstructed images of test conductivity 3 are given in figure 8. All three methods
are able to fit the boundary data so that

N∑
e=1

‖(�σ )
−1 Ie − Ve‖2

L2(∂�)

‖Ve‖2
L2(∂�)

∼ O(10−5).

However, the variational methods do a better job of distinguishing between the two inclusions.
Again, the wall clock times of the variational methods were twice that of output least squares.
However, solutions to the variational formulations were obtained in approximately four minutes
each which is still quite affordable.

Figure 9 displays the results obtained for test conductivity 4. Note that all three methods
are smooth and without spurious artifacts. All three identify a region with low conductivity
and a region with high conductivity. However, none of the methods are able to distinguish



1178 L Borcea et al

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0

y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.3

1.2

1.1

1

0.9

0.8

0.7

(a)
1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0

y
x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.3

1.2

1.1

1

0.9

0.8

0.7

(b)
1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0

y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.3

1.2

1.1

1

0.9

0.8

0.7

(c)

Figure 9. Reconstructions of test conductivity 4. Noise level: 1%. (a) Output least squares;
(b) equation error; (c) constrained least squares.

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0

y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

0.9

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

0.9

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

0.9

(a)
1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0

y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)
1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0

y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c)

Figure 10. Reconstructions of test conductivity 1. Noise level: 3%. (a) Output least squares;
(b) equation error; (c) constrained least squares.

between the two inclusions of conductivity 2. Note that both the least squares methods used
the same regularization parameter, α = 10−5.

Intuitively, we can better understand why the constrained least squares methods is superior
in the presence of noise by examining the iterative process of the three methods. The output
least squares and equation-error methods have no explicit restrictions on σ . Thus, the iterates
are allowed to move freely. We observe that they exhibit a sort of ‘zig-zag’ behaviour pattern
and do not stay in the same feasibility region from one iteration to the next. Thus, the iterates
jump in and out of the Dirichlet and Thomson feasibility regions. This behaviour can make
the methods unstable, particularly in the presence of noise. In contrast, the constrained least
squares method restricts the iterates to the Dirichlet infeasibility region. Hence, the constraint
controls the change in σ and does not allow the ‘zig-zag’ behaviour to occur, and the feasibility
constraint prevents the kind of instability present in the other two methods.

6.2.2. Numerical results with 3% noise. We repeat the reconstructions with data containing
3% noise and see similar results. Figures 10–13 show the reconstructed images of test
conductivities 1–4 respectively. We note that, in all four tests, the three algorithms fitted
the data on the boundary equally well despite the fact that the resulting images differ greatly.

In figure 11, note again that both least squares begin with the same regularization
parameter, α = 10−3 which is subsequently reduced three orders of magnitude. However, the
constrained least squares algorithm produces a smoother image with only one major spurious
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Figure 11. Reconstructions of test conductivity 2. Noise level: 3%. (a) Output least squares;
(b) equation error; (c) constrained least squares.
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Figure 12. Reconstructions of test conductivity 3. Noise level: 3%. (a) Output least squares;
(b) equation error; (c) constrained least squares.
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Figure 13. Reconstructions of test conductivity 4. Noise level: 3%. (a) Output least squares;
(b) equation error; (c) constrained least squares.

artifact while the output least squares method includes many more artifacts and is unable to
identify the region of low conductivity. The reconstructions of test conductivity 3, figure 12,
show that the output least squares algorithm again produces many spurious artifacts and has
no success in distinguishing between the two separate inclusions. Both variational methods
produce smoother images and the constrained least squares method is able to make some
distinction between the two inclusions. Furthermore, we note that the output least squares
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method took approximately 2 min to run while the constrained least squares method took just
under 3 1

2 min.

6.3. Summary of the numerical results

Based on the presented numerical results, we make the following observations on the
performance of the three methods on the set of test cases.

• The constrained least squares and equation-error variational methods are more effective
than output least squares. In the presence of noise, the reconstructions obtained using the
constrained least squares method are superior to those of the equation-error method.

• The output least squares method fits the boundary data in the L2 norm as well as, or better
than, the constrained least squares and equation-error methods. However, the variational
methods produce better images.

• In the presence of noise and with the same regularization parameter, the constrained least
squares method is often able to produce smoother images with less spurious artifacts than
the output least squares.

The results given in this section provide strong evidence showing that the variational
methods are superior to output least squares in the presence of noise in terms of reconstruction
quality. We note that these results can be improved. For example, a better regularization
scheme and/or a better method for choosing the regularization parameterαshould be beneficial.
Furthermore, all the methods would benefit from a better initial guess σ 0, than the constant
σ 0 = 1 that we have considered here. See for example results in [18, 48] where σ 0 is estimated
by a multigrid approach.

7. Summary

We have introduced a set of variationally constrained reconstruction methods for EIT. The
Dirichlet and Thomson variational constraints on the conductivity function σ were previously
introduced by Berryman and Kohn in [13]. In this paper, we analyse the constraints and show
how to use them in inversion. We discuss a variety of algorithms for the static EIT problem and
describe in detail the implementation and the performance of one of them—the constrained
least squares approach. Comparisons with two well known methods, the unconstrained least
squares (see for example [106]) and the equation-error [70, 105], are given. Traditionally, the
unconstrained least squares approach has been the method of choice, due to its simplicity and
relatively low computational cost. However, the unconstrained least squares approach does not
make the best use of the measured data (i.e., boundary voltage V = (�σ	)

−1 I ) because it fits the
data in the convenient L2(∂�)-norm, instead of the more natural and stronger H 1/2(∂�)-norm.
We have shown that variational constraints can be used efficiently to achieve a better fit and
that at the reconstructed σ the current density j, satisfying the Neumann boundary conditions
−j · n|∂� = I , and the potential φ, satisfying the Dirichlet boundary conditions φ|∂� = V ,
are correctly related by Ohm’s law j = −σ∇φ. We demonstrate that achieving such a data fit
can be done with an affordable computational cost and that the resulting images of σ can have
better resolution than those generated by conventional, unconstrained least squares methods.
Note that this work is based on the PhD thesis of GAG. For more details, please see [48].
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[22] Brühl M 2001 Explicit characterization of inclusions in electrical impedance tomography SIAM. J. Math. Anal.

32 1327–41
[23] Calderón A P 1980 On an inverse boundary value problem Seminar on Numerical Analysis and its Applications

to Continuum Physics (Rio de Janeiro: Soc. Brasileira de Matèmatica) pp 65–73
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